GOODWE

User Manual

Hybrid Inverter

ET Series 15-30kW

V1.5-2023-11-30

Copyright@GoodWe Technologies Co., Ltd. All rights reserved.

No part of this manual can be reproduced or transmitted to the public platform in any form or by any means without the prior written authorization of GoodWe Technologies Co.,Ltd.

Trademarks

GOODWE and other GOODWE trademarks are trademarks of GoodWe Technologies Co.,Ltd. All other trademarks or registered trademarks mentioned in this manual are owned by GoodWe Technologies Co.,Ltd.

Notice

The information in this user manual is subject to change due to product updates or other reasons. This manual cannot replace the product safety labels unless otherwise specified. All descriptions here are for guidance only.

CONTENT

1	About This Manual	1
	1.1 Applicable Model	1
	1.2 Target Audience	1
	1.3 Symbol Definition	1
2	Safety Precaution	2
	2.1 General Safety	
	2.2 PV String Safety	
	2.3 Inverter Safety	
	2.4 Battery Safety	
	2.5 Personnel Requirements	
	2.6 EU Declaration of Conformity	
3	Product Introduction	5
•	3.1 Product Overview	
	3.2 Application Scenarios	6
	3.3 Working Mode	9
	3.3.1 System Working Mode	9
	3.3.2 Inverter Operation Mode	13
	3.4 Features	14
	3.5 Appearance	16
	3.5.1 Parts	
	3.5.2 Dimension	
	3.5.3 Indicators	
	3.5.4 Nameplate	19
4	Check and Storage	
	4.1 Check Before Receiving	
	4.2 Deliverables	
	Inveter Deliverables	
	4.3 Storage	22
5	Installation	23
	5.1 Installation Requirements	23
	5.2 Inverter Installation	26
	5.2.1 Moving the Inverter	26
	5.2.2 Installing the Inverter	26
6	Electrical Connection	28
	6.1 System Wiring Diagram	28
	6.2 Safety Precaution	30
	6.3 Connecting the PE cable	30

	6.4 Connecting the DC Input Cable(PV)	31
	6.5 Connecting the Battery Cable	33
	6.6 Connecting the AC Cable	
	6.7 Communication Connection	40
	6.7.1 Connecting the Communication Cable	41
	6.7.2 Connecting the BMS or Meter Communication Cable	42
	6.7.4 Installing the Communication Module (Optional)	44
7	Equipment Commissioning	45
	7.1 Check Before Power ON	
	7.2 Power On	
8	System Commissioning	46
•	8.1 Indicators and Buttons	
	8.2 Setting Inverter Parameters via SolarGo App	
	8.3 Monitoring via SEMS Portal	
9	Maintenance	48
	9.1 Power OFF the Inverter	
	9.2 Removing the Inverter	
	9.3 Disposing of the Inverter	
	9.4 Troubleshooting	
	9.5 Routine Maintenance	
10) Technical Parameters	
$\pm \mathbf{u}$	/ Technical Falanieleis	

1 About This Manual

This manual describes the product information, installation, electrical connection, commissioning, troubleshooting, and maintenance. Read through this manual before installing and operating the product. All the installers and users have to be familiar with the product features, functions, and safety precautions. This manual is subject to update without notice. For more product details and latest documents, visit https://en.goodwe.com.

1.1 Applicable Model

This manual applies to the listed inverters below:

Model	Nominal Output Power	Nominal Output Voltage
GW15K-ET	15000W	
GW20K-ET	20000W	
GW25K-ET	25000W	380/400V, 3L/N/PE
GW29.9K-ET	29900W	
GW30K-ET	30000W	

1.2 Target Audience

This manual applies to trained and knowledgeable technical professionals. The technical personnel has to be familiar with the product, local standards, and electric systems.

1.3 Symbol Definition

Different levels of warning messages in this manual are defined as follows:

DANGER

Indicates a high-level hazard that, if not avoided, will result in death or serious injury.

Indicates a medium-level hazard that, if not avoided, could result in death or serious injury.

Indicates a low-level hazard that, if not avoided, could result in minor or moderate injury.

NOTICE

Highlights key information and supplements the texts. Or some skills and methods to solve product-related problems to save time.

2 Safety Precaution

Please strictly follow these safety instructions in the user manual during the operation.

WARNING

The inverters are designed and tested to strictly comply with related safety rules. Read and follow all the safety instructions and cautions before any operations. Improper operation might cause personal injury or property damage as the inverters are electrical equipment.

2.1 General Safety

NOTICE

- The information in this user manual is subject to change due to product updates or other reasons. This manual cannot replace the product safety labels unless otherwise specified. All descriptions here are for guidance only.
- Before installations, read through the user manual to learn about the product and the precautions.
- All operations should be performed by trained and knowledgeable technicians who are familiar with local standards and safety regulations.
- Use insulating tools and wear personal protective equipment when operating the equipment to ensure personal safety. Wear anti-static gloves, clothes, and wrist strips when touching electronic devices to protect the inverter from damage.
- Strictly follow the installation, operation, and configuration instructions in this manual.
 The manufacturer shall not be liable for equipment damage or personal injury if you do not follow the instructions. For more warranty details, please visit https://en.goodwe.com/warranty.

2.2 PV String Safety

DANGER

Connect the DC cables of the inverter to the included DC terminals. Severe damage might happen if other types of DC terminals are used, which are beyond the manufacturer's liability.

! WARNING

- Ensure the component frames and the bracket system are securely grounded.
- Ensure the DC cables are connected tightly, securely and correctly.
- Measure the DC cables with a multimeter to avoid reverse polarity connection. Also, the voltage should be under the permissible range.
- Do not connect one PV string to more than one inverter at the same time. Otherwise, it may damage the inverter.
- The PV modules used with the inverter must have an IEC61730 class A rating.

2.3 Inverter Safety

WARNING

- The voltage and frequency at the connecting point should meet the on-grid requirements.
- Additional protective devices like circuit breakers or fuses are recommended on the AC side. Specification of the protective device should be at least 1.25 times the maximum AC output current.
- Make sure that all the groundings are tightly connected. When there are multiple inverters, make sure that all the grounding points on the enclosures are equipotential bonding.
- The alarm can be cleared automatically if the inverter triggers a fault for less than 5 times within 24 hours. The inverter will shutdown for protection after the 5th electric arc fault alarm. The inverter can operate normally after the fault is solved.
- BACK-UP is not recommended if the PV system is not configured with batteries. Otherwise, this may cause system power failure.

🔔 DANGER

- All labels and warning marks should be visible after the installation. Do not cover, scrawl, or damage any label on the equipment.
- · Warning labels on the inverter are as follows:

4	DANGER High voltage hazard. Disconnect all incoming power and turn off the product before working on it.	A Comin	Delayed discharge. Wait 5 minutes after power off until the components are completely discharged.
	Read through the user manual before any operations.	<u>.</u>	Potential risks exist. Wear proper PPE before any operations.
	High-temperature hazard. Do not touch the product under operation to avoid being burnt.		Grounding point.
€	CE certification mark	Ā	Do not dispose of the inverter as household waste. Discard the product in compliance with local laws and regulations, or send it back to the manufacturer.

2.4 Battery Safety

WARNING

- The battery used with the inverter shall be approved by the inverter manufacturer. The
 approved battery list can be obtained through the official website.
- Before installations, read through the corresponding battery's user manual to learn about the product and the precautions. Strictly follow its requirements.
- If the battery discharged completely, please charge it in strict accordance with the corresponding model's user manual.
- Factors such as: temperature, humidity, weather conditions, etc. may limit the battery's current and affect its load.
- Contact after-sale service immediately if the battery is not able to be started. Otherwise, the battery might be damaged permanently.
- Use the multimeter to measure the DC cable to avoid reverse polarity connection. Also, the voltage should be under the permissible range.
- Do not connect one battery pack to more than one inverter at the same time. Otherwise, it
 may cause damage to the inverter.

2.5 Personnel Requirements

NOTICE

- Personnel who install or maintain the equipment must be strictly trained, learn about safety precautions and correct operations.
- Only qualified professionals or trained personnel are allowed to install, operate, maintain, and replace the equipment or parts.

2.6 EU Declaration of Conformity

GoodWe Technologies Co., Ltd. hereby declares that the inverter with wireless communication modules sold in the European market meets the requirements of the following directives:

- Radio Equipment Directive 2014/53/EU (RED)
- Restrictions of Hazardous Substances Directive 2011/65/EU and (EU) 2015/863 (RoHS)
- Waste Electrical and Electronic Equipment 2012/19/EU
- Registration, Evaluation, Authorization and Restriction of Chemicals (EC) No 1907/2006 (REACH)

GoodWe Technologies Co., Ltd. hereby declares that the inverter without wireless communication modules sold in the European market meets the requirements of the following directives:

- Electromagnetic compatibility Directive 2014/30/EU (EMC)
- Electrical Apparatus Low Voltage Directive 2014/35/EU (LVD)
- Restrictions of Hazardous Substances Directive 2011/65/EU and (EU) 2015/863 (RoHS)
- Waste Electrical and Electronic Equipment 2012/19/EU
- Registration, Evaluation, Authorization and Restriction of Chemicals (EC) No 1907/2006 (REACH)

You can download the EU Declaration of Conformity on https://en.goodwe.com.

3 Product Introduction

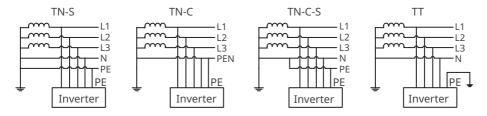
3.1 Product Overview

Intended usage

Inverters control and optimize the power in PV systems through an integrated energy management system. The power generated in the PV system can be used, stored in the battery, output to the utility grid, etc.

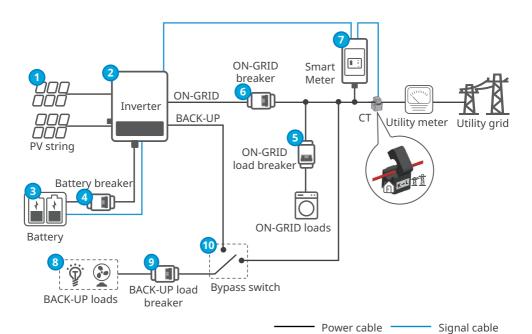
Model

This manual applies to the listed inverters below:


- GW15K-ET
- GW20K-ET
- GW25K-ET
- GW29.9K-ET
- GW30K-ET

Model description

No.	Referring to	Explanation
1	Brand Code	GW: GoodWe
2	Rated Power	15K: the rated power is 15000W.
3	Series Code	ET: ET series three-phase hybrid inverter

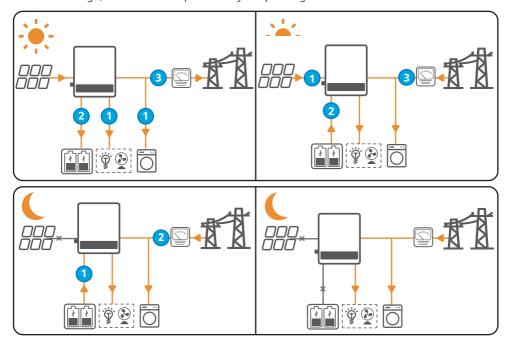

Supported Grid Types

3.2 Application Scenarios

WARNING

- The PV system is not suitable to connect equipment that relies on a stable power supply, such as medical equipment to sustain life. Ensure that no personal injury is occurred when the system is disconnected.
- Avoid loads with high start-up current like high-power water pumps in the PV system.
 Otherwise, the off-grid output may fail due to excessive instantaneous power.
- BACK-UP is not recommended if the PV system is not configured with batteries. Otherwise, this may cause system power failure.
- Do not connect auto-coupling or isolation transformers to the BACK-UP port. Otherwise, the inverter may be damaged and the system power may fail.
- Factors such as: temperature, humidity, weather conditions, etc. may limit the battery's current and affect its load.
- When single overload protection occurs, the inverter can restart automatically; however, the restarting time will be extended if it happens several times. For a faster restarting, try it via APP.
- When the grid is disconnected, the off-grid function of the inverter will be closed
 automatically if the load capacity exceeds the inverter's rated power. To enable it, turn off
 the large loads and ensure the load power is less than the rated power of the inverter.
- Nomral household loads can be supported when the inverter is in back-up mode. Accepted loads as below:
 - Inductive loads: 1.5P non-inverter air conditioner can be connected to the inverter. If two or more non-inverter air conditioners are connected, the back-up mode may be unstable.
 - Capacitive load: total power ≤ 0.66 times of the inverter's rated output power.
 - Loads with neutral wires are allowed when connecting three phase loads to the BACK-UP port. Do not connect loads without neutral wire to the BACK-UP port. Otherwise, the loads cannot work properly or even be damaged.

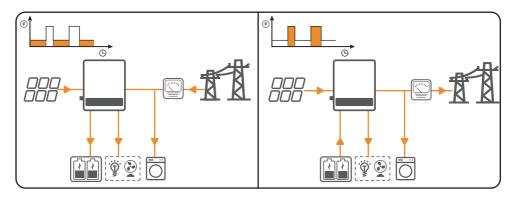
No.	Parts	Description	
1	PV string	The PV string consists PV panels series connected.	
2	Inverter	Supports ET 15 -30kW series inverters.	
3	Battery	The battery used with the inverter shall be approved by the inverter manufacturer. The approved battery list can be obtained through the official website.	
4	Battery breaker	Recommended specifications: nominal current≥63A, nominal voltage≥1000V.	
5	ON-GRID load breaker	Depend on the actual using load.	
6	ON-GRID breaker	Self-prepared breaker. Recommended specifications: GW15K-ET: nominal current≥32A, nominal voltage≥400V GW20K-ET: nominal current≥40A, nominal voltage≥400V GW25K-ET: nominal current≥50A, nominal voltage≥400V GW29.9K/30K-ET: nominal current≥63A, nominal voltage≥400V	
7	Smart meter	The smart meter is delivered with the inverter or purchased from the inverter manufacturer. Recommended model: GM3000.	


No.	Parts	Description	
8	BACK-UP loads	 Connecting BACK-UP loads, such as loads requiring 24-hour power supply or other important loads. Connecting unbalanced loads. L1, L2, L3 of the inverter respectively connected to loads with different power. 	
		 Loads with neutral wires are allowed when connecting three phase loads to the BACK-UP port. Do not connect loads without neutral wire to the BACK-UP port. Otherwise, the loads cannot work properly or even be damaged. Do not connect auto-coupling or isolation transformers. 	
9	BACK-UP load breaker	Self-prepared breaker. Recommended specifications: GW15K-ET: nominal current≥32A, nominal voltage≥400V GW20K-ET: nominal current≥40A, nominal voltage≥400V GW25K-ET: nominal current≥50A, nominal voltage≥400V GW29.9K/30K-ET: nominal current≥63A, nominal voltage≥400V	
10	Bypass switch	1	

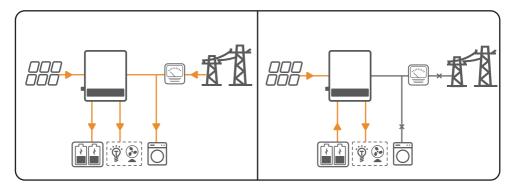
3.3 Working Mode

3.3.1 System Working Mode

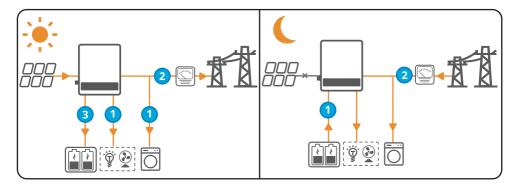
Self Consumption Mode


- For solar power, consider self consumption mode in priority: the excess power charges the battery in day time; the battery supplies power to the load when there is no solar power generated at night. This will improve the self consumption rate and saves electricity costs.
- It is suitable for areas with high electricity prices and little or no solar power generation subsidies.
- · Day time:
 - When the power generated in the PV system is sufficient, it will supply the loads in priority.
 The excess power will charge the batteries first, then the remaining power will be sold to the power grid.
 - When the power generated in the PV system is insufficient, the battery will supply the loads in priority. If the battery power is insufficient, the load will be powered by the power grid.
- Night:
 If the battery power is sufficient, the load will be powered by the battery. If the battery power is not enough, the load will be powered by the power grid.

Economic Mode


NOTICE

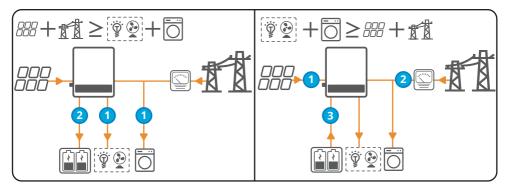
- Economic mode can only be selected if local laws and regulations are met, such as whether
 to allow the power grid to charge the battery and whether to allow the battery to be
 discharged and sold to the power grid. If not, do not select this mode.
- It is recommended to use economic mode in scenarios when the peak-valley electricity price varies a lot.
- When the electricity price is at its peak, the battery will power the load first, and the remaining power can be sold to power grid.
- When the electricity price is at its valley, set the time for power grid to charge the battery.


BACK-UP Mode

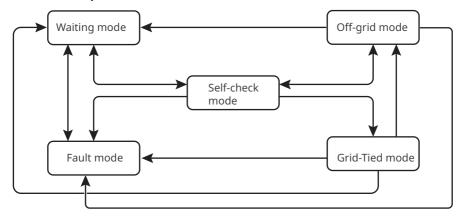
- The BACK-UP mode can set different battery SOC values during grid connection and off grid. When the power grid loses power, the inverter switches to off grid mode, and the battery can discharge to supply power to the load to ensure that the Back-UP load does not lose power; When the power grid is restored, the inverter switches to grid connected mode. If the battery's SOC is lower than the set SOC, the battery can be charged by power grid.
- The purchase of electricity from the power grid to charge the battery must comply with local laws and regulations.
- · Recommended for use in areas with unstable power grids.
- When the SOC of the battery is lower than the set value, using solar power generation and purchasing electricity from the power grid to load and charge the battery.
- When the power grid is cut off, if the PV power generation cannot meet the load usage, the battery discharge will supplement this part of power to ensure that the BACK-UP end load does not cut off.

Delayed Charging Mode

- Delayed charging mode can prevent the battery from quickly filling up and wasting energy when the PV energy exceeds the limit power value.
- It applies to regions with grid connected power output limitations.
- Daytime: After solar power generation prioritizes meeting the load usage, when the excess
 PV power is less than the limit power value, priority will be given to selling the electricity to
 the power grid; When the excess PV energy exceeds the limit power value, use the power
 exceeding the limit output power to charge the battery to prevent power waste.
- Night: If the battery power is sufficient, the load will be powered by the battery. If the battery power is not enough, the load will be powered by the grid.



Peak Shaving mode


NOTICE

Peak Shaving mode is mainly applicable to industrial and commercial scenarios. When the total power consumption of the load exceeds the power consumption quota in a short period of time, battery discharge can be used to reduce the power exceeding the quota.

- When the sum of PV power generation and the power purchased from the grid exceeds the power used by the load, the excess power can charge the battery.
- When the power used by the load exceeds the sum of PV power generation and the power purchased from the grid, the battery discharges to supplement the excess power.

3.3.2 Inverter Operation Mode

No.	Parts	Description
1	Waiting mode	 Waiting stage after the inverter is powered on or clearing the alarms. When the conditions are met, it enters self-check mode. If there is a fault, the inverter enters fault mode.
2	Self-check mode	 Before the inverter starts up, it continuously performs self-check, initialization, etc. When the conditions are met, it enters the grid-tied mode, and the inverter starts on grid connection. If the grid is not detected or the grid fails during checking, and the back-up function is enabled, it enters the off-grid mode; if the back-up is disabled, it enters waiting mode. If the self-check fails, and faults are detected, it enters fault mode. If the self-check fails, and alarms are detected, it enters fault mode.
3	Grid-Tied mode	 The inverter is grid-tied successfully. If a fault is detected and back-up function is disabled, it enters fault mode. If an alarm is detected and the back-up function is disabled, it enters waiting mode. If the back-up function is enabled, and a fault/alarm that will not influence the back up funcation is detected, it enters off-grid mode. If the back-up function is enabled, and a fault that will influence the back up funcation is detected, it enters fault mode. If the back-up function is enabled, and an alarm that will influence the back up funcation is detected, it enters waiting mode.
4	Off-grid mode	When the grid power fails, the inverter switches to the off-grid mode and continues to supply power to the load via BACK-UP port. If a fault is detected, it enters the fault mode. If an alarm is deteced or the back-up function is disabled, it enters waiting mode. If the conditions meet grid-tied requirements and and the back-up function is enabled, it enters self-check mode.
5	Fault mode	If a fault is detected, the inverter enters the fault mode. When the fault is cleared, it enters waiting mode.

3.4 Features

Power derating

For a safe operation, the inverter will automatically reduce the output power when the operating environment is not ideal.

The following are the factors that may occur power derating. Please try to avoid them during usage.

- Unfavorable environmental conditions, e.g., direct sunlight, high temperature, etc.
- · Inverter's output power percentage has been set.
- · Over-frequency derating.
- · Higher input voltage value.
- · Higher input current value.

AFCI

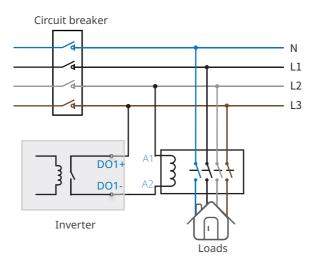
Reasons to occur electric arcs.

- · Damaged connectors in the PV or battery system.
- · Wrong connected or broken cables.
- · Aging connectors and cables.

Methods to detect electric arcs

- The inverter has an integrated AFCI function satisfies IEC63027.
- When the inverter detects an electric arc, users can find the time of the fault and the detailed phenomenon through the app.
- The inverter will shutdown for protection until the AFCI alarms are cleared. After clearing the alarms, the inverter can automatically reconnect to the grid.
 - Automatic reconnection: The alarm can be cleared automatically in 5 minutes if the inverter triggers a fault for less than 5 times within 24 hours.
 - Manual reconnection: The inverter will shutdown for protection after the 5th electric arc fault within 24 hours. The inverter cannot work normally until the fault is solved. Please refer to the SolarGo App User Manual for detailed operations.

Model	Label	Description
GW15K-ET	F-I-AFPE-1-2/2-2	F: Full coverage I: Integrated
GW20K-ET		AFPE: Detection and interruption capability provided 1: 1 monitored string per input port 2/2: 2/2 input ports per channel 2: 2 monitored channels
GW25K-ET	F-I-AFPE-1-2/4-2	F: Full coverage I: Integrated
GW29.9K-ET		AFPE: Detection and interruption capability provided 1: 1 monitored string per input port 2/4: 2/4 input ports per channel
GW30K-ET		2: 2 monitored channels

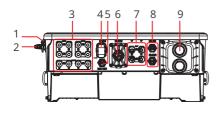

Load Control

The inverter reserves a dry contact controlling port, which supports connecting additional contactors to enable/disable the loads, such as household loads, heat pumps, etc.

The load control methods are as follows:

- Time control: set the time to enable/disable the loads, and the loads will be turned on or off automatically within the setting time period.
- Switch control: when the control mode is ON, the loads will be enabled; when it is OFF, the loads will be disabled.
- BACK-UP load control: the inverter has an integrated relay controlling port, which can control
 the loads off or on. In off-grid mode, the loads connected to the relay port can be turned off
 if the overload at BACK-UP is detected or the battery SOC value is lower than the battery offgrid protection setting.

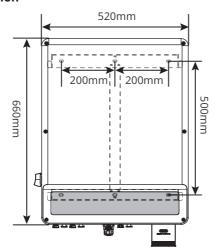
For more detailed instructions, please refer to the SolarGo User Manual.

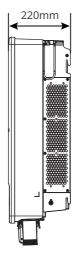



SolarGo User Manual

3.5 Appearance

3.5.1 Parts




- 1. DC switch lock hole[1]
- 4. Communication module port (COM)
- 7. Battery input terminal (BAT+/-)
- 10. Indicators
- 13. Mounting plate
- [1]: Only for Australia.

- 2. DC switch
- 5. METER communication port
- 8. BMS communication port
- 11. PE terminal
- 14. Heat Sink

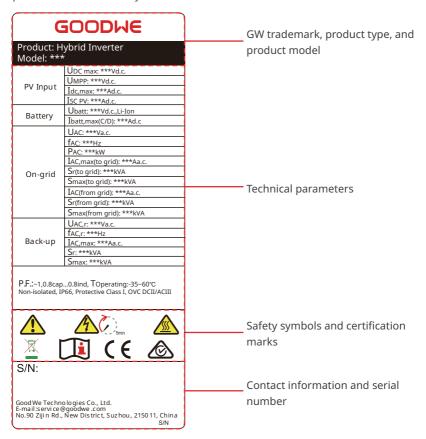
- 3. PV input terminal (PV+/-)
- 6. Communication port (COM2)
- 9. AC output terminal (On-Grid and Back-Up)
- 12. Handle

3.5.2 Dimension

3.5.3 Indicators

Inverter SOC indicator

Indicator	Status	Description
		The inverter is power on and in the standby mode.
		The inverter is starting up and in the self-check mode.
(1)		The inverter is in normal operation under gridtied or off-grid modes.
	шшшш	BACK-UP output overload.
		A fault has occurred.
		The inverter is powered off.
		The grid is abnormal but the BACK-UP port of the inverter is powered.
(1)		The grid is normal and the BACK-UP port of the inverter is powered.
		BACK-UP is off.
		The monitoring module of the inverter is resetting.
((^))		The inverter fails to connect with the communication Termination.
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	шшшш	Communication fault between the communication Termination and Server.
		The monitoring of the inverter operates well.
		The monitoring module of the inverter has not been started yet.


Battery SOC indicator

Indicator	Description
	75% <soc≤100%< th=""></soc≤100%<>
	50% <soc≤75%< th=""></soc≤75%<>
	25% <soc≤50%< th=""></soc≤50%<>
	0% <soc≤25%< th=""></soc≤25%<>
	No battery connected.

Indictor light blinking during battery discharing: for example, when the battery SOC is betweent 25% and 50%, the light at the 50% position blinks.

3.5.4 Nameplate

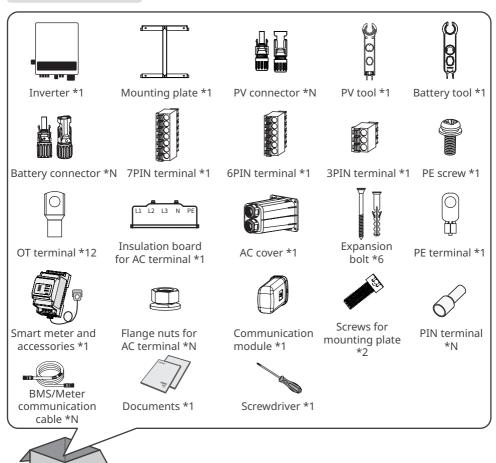
The nameplate is for reference only.

4 Check and Storage

4.1 Check Before Receiving

Check the following items before receiving the product.

- 1. Check the outer packing box for damage, such as holes, cracks, deformation, and other signs of equipment damage. Do not unpack the package and contact the supplier as soon as possible if any damage is found.
- Check the inverter model. If the inverter model is not what you requested, do not unpack the product and contact the supplier.
- 3. Check the deliverables for correct model, complete contents, and intact appearance. Contact the supplier as soon as possible if any damage is found.


4.2 Deliverables

WARNING

Connect the DC cables with the included terminals. The manufacturer shall not be liable for the damage if other terminals are used.

- The number of pin terminals, PV connectors, and battery connectors are various depending on different inverters. The actual accessories may differ.
- PV connector: GW15K/20K-ET: 4 x PV+/PV-; GW25K/29.9K/30K-ET: 6 x PV+/PV-.
- Battery connector: GW15K/20K-ET: 1 x BAT+/BAT-; GW25K/29.9K/30K-ET: 2 x BAT+/BAT-.
- BMS communication cable: GW15K/20K-ET: 1; GW25K/29.9K/30K-ET: 2; Meter communication cable GW15K/20K-ET: 2; GW25K/29.9K/30K-ET: 3.

Inveter Deliverables

4.3 Storage

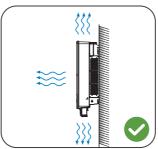
If the equipment is not to be installed or used immediately, please ensure that the storage environment meets the following requirements:

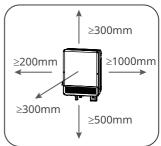
- 1. Do not unpack the outer package or throw the desiccant away.
- 2. Store the equipment in a clean place. Make sure the temperature and humidity are appropriate and no condensation.
- 3. The height and direction of the stacking inverters should follow the instructions on the packing box.
- 4. The inverters must be stacked with caution to prevent them from falling.
- 5. If the inverter has been long term stored, it should be checked by professionals before being put into use.

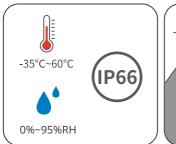
5 Installation

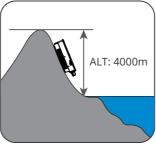
5.1 Installation Requirements

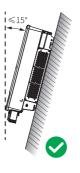
Installation Environment Requirements

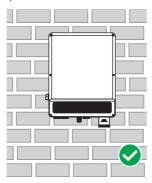

- 1. Do not install the equipment in a place near flammable, explosive, or corrosive materials.
- 2. Do not install the equipment in a place that is easy to touch, especially within children's reach. High temperature exists when the equipment is working. Do not touch the surface to avoid burning.
- 3. Avoid the water pipes and cables buried in the wall when drilling holes.
- 4. Install the equipment in a sheltered place to avoid direct sunlight, rain, and snow. Build a sunshade if it is needed.
- 5. The place to install the equipment shall be well-ventilated for heat radiation and large enough for operations.
- 6. The equipment with a high ingress protection rating can be installed indoors or outdoors. The temperature and humidity at the installation site should be within the appropriate range.
- 7. Install the equipment at a height that is convenient for operation and maintenance, electrical connections, and checking indicators and labels.
- 8. The altitude to install the inverter shall be lower than the maximum working altitude 4000m.
- 9. Install the equipment away from electromagnetic interference. If there are radio stations or wireless communication equipment below 30 MHz near the installation location, please install the equipment as follows:
 - Add a multi-turn winding ferrite core at the DC input line or AC output line of the inverter, or add a low-pass EMI filter.
 - The distance between the inverter and the wireless EMI equipment is more than 30m.







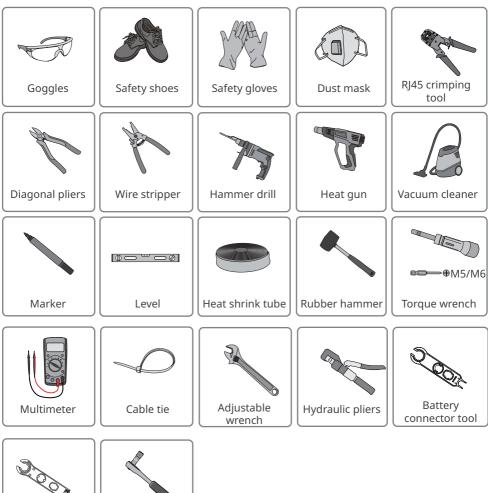



Mounting Support Requirements

- The mounting support shall be nonflammable and fireproof.
- Install the equipment on a surface that is solid enough to bear the inverter weight.
- Do not install the product on the support with poor sound insulation to avoid the noise generated by the working product, which may annoy the residents nearby.

Installation Angle Requirements

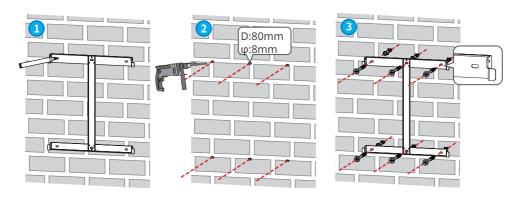
- Install the inverter vertically or at a maximum back tilt of 15 degrees.
- Do not install the inverter upside down, forward tilt, backward tilt, or horizontally.



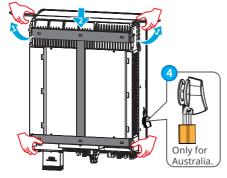
Installation Tool Requirements

The following tools are recommended when installing the equipment. Use other auxiliary tools on site if necessary.

5.2 Inverter Installation

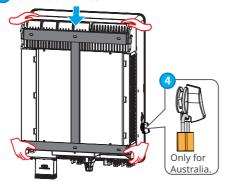

5.2.1 Moving the Inverter

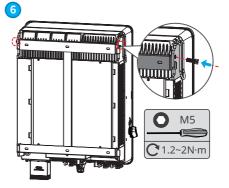
CAUTION


- Operations such as transportation, turnover, installation and so on must meet the requirements of the laws and regulations of the country or region where it is located.
- Move the inverter to the site before installation. Follow the instructions below to avoid personal injury or equipment damage.
 - 1. Consider the weight of the equipment before moving it. Assign enough personnel to move the equipment to avoid personal injury.
 - 2. Wear safety gloves to avoid personal injury.
 - 3. Keep balance to avoid falling down when moving the equipment.

5.2.2 Installing the Inverter

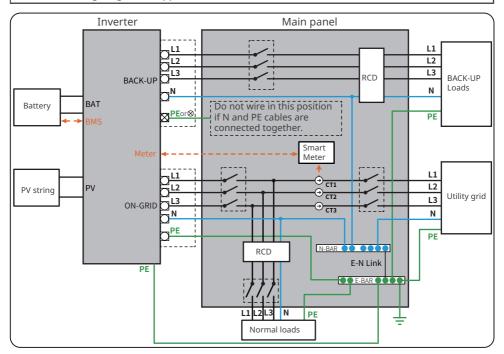
- Avoid the water pipes and cables buried in the wall when drilling holes.
- Wear goggles and a dust mask to prevent the dust from being inhaled or contacting eyes when drilling holes.
- Make sure the inverter is firmly installed in case of falling down.
- The DC switch lock of appropriate size should be prepared by customers. The diameter of the lock hole is 5mm. The lock might not be able to install if the size is inappropriate.
- **Step 1:** Put the plate on the wall horizontally and mark positions for drilling holes.
- **Step 2:** Drill holes to a depth of 80mm using the hammer drill. The diameter of the drill bit should be 8mm.
- **Step 3:** Use the expansion bolts to fix the inverter on the wall.
- **Step 4: (Optional)** Secure the DC switch with the DC switch lock, ensuring that the DC switch is "OFF" during installation.
- **Step 5:** Install the inverter on the mounting plate. For models with handles, please lift the inverter using the handles. For models without handles, please lift the inverter directly.
- **Step 6:** Tighten the nuts to secure the mounting plate and the inverter.





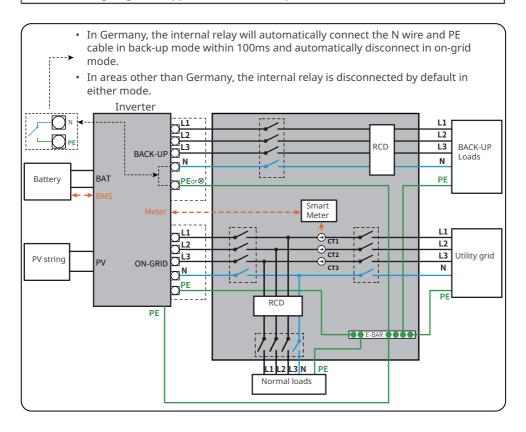
5 Without handles

6 Electrical Connection


6.1 System Wiring Diagram

NOTICE

- N and PE wiring via ON-GRID and BACK-UP ports of the inverter are different based on the regulation requirements of different regions. Refer to the specific requirements of local regulations.
- There are built-in relays inside of the inverter's ON-GRID and BACK-UP AC ports. When the
 inverter is in the off-grid mode, the built-in ON-GRID relay is open; while when the inverter
 is in grid-tied mode, it is closed.
- When the inverter is powered on, the BACK-UP AC port is charged. Power off the inverter
 first if maintenance is required for the loads connected with BACK-UP ports. Otherwise, it
 may cause electric shock.


N and PE cables are connected together in the Main Panel for wiring.

- To maintain neutral integrity, the neutral cable of ON-GRID side and BACK-UP side must be connected together, otherwise BACK-UP function will not work.
- The following diagram is applicable to areas in Australia, New Zealand, etc.

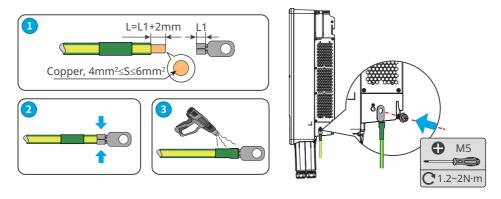
N and PE cables are separately wired in the Main Panel.

- Ensure that the grounding of BACK-UP is correctly and tightened. Otherwise, the BACK-UP function may be abnormal in case of grid failure.
- The following diagram is applicable to areas except Australia, New Zealand.

6.2 Safety Precaution

A DANGER

- Perform electrical connections in compliance with local laws and regulations. Including operations, cables, and component specifications.
- Disconnect the DC switch and the AC output switch of the inverter to power off the inverter before any electrical connections. Do not work with power on. Otherwise, an electric shock may occur.
- Tie the same type cables together, and place them separately from cables of different types.
 Do not place the cables entangled or crossed.
- If the cable bears too much tension, the connection may be poor. Reserve a certain length of the cable before connecting it to the inverter cable port.
- When crimping the terminals, ensure that the conductor part of the cable is in full contact with
 the terminals. Do not crimp the cable jacket with the terminal. Otherwise the inverter may
 not operate, or its terminal block getting damaged due to heating and other phenomenon
 because of unreliable connection after operation.


NOTICE

- Wear personal protective equipment like safety shoes, safety gloves, and insulating gloves during electrical connections.
- All electrical connections should be performed by qualified professionals.
- Cable colors in this document are for reference only. The cable specifications shall meet local laws and regulations.

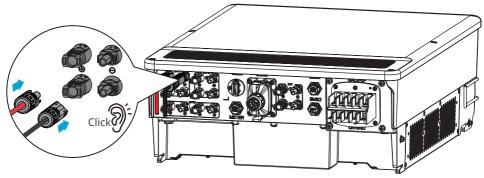
6.3 Connecting the PE cable

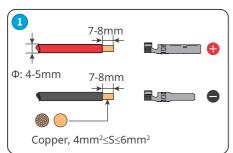
! WARNING

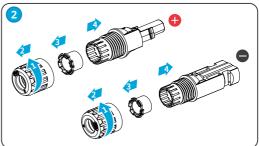
- The PE cable connected to the enclosure of the inverter cannot replace the PE cable connected to the AC output port. Make sure that both of the two PE cables are securely connected.
- Make sure that all the grounding points on the enclosures are equipotentially connected when there are multiple inverters.
- To improve the corrosion resistance of the terminal, you are recommended to apply silica gel or paint on the ground terminal after installing the PE cable.
- The PE cable should be prepared by the customer. Recommended specifications:
 - Type: single-core outdoor copper cable
 - Conductor cross-sectional area: 4-6mm²

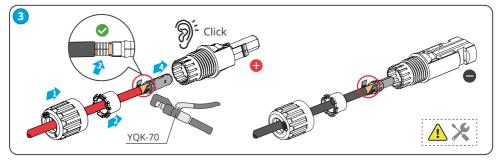
6.4 Connecting the DC Input Cable(PV)

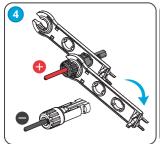
A DANGER

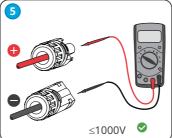

- Do not connect one PV string to more than one inverter at the same time. Otherwise, it may
 cause damage to the inverter.
- Confirm the following information before connecting the PV string to the inverter. Otherwise, the inverter may be damaged permanently or even cause fire and cause personal and property losses.
 - 1. Make sure that the max short circuit current and the max input voltage per MPPT are within the permissible range.
 - 2. Make sure that the positive pole of the PV string connects to the PV+ of the inverter. And the negative pole of the PV string connects to the PV- of the inverter.


! WARNING


The PV strings cannot be grounded. Ensure the minimum insulation resistance of the PV string to the ground meets the minimum insulation resistance requirements before connecting the PV string to the inverter (R=maximum input voltage/ 30mA).

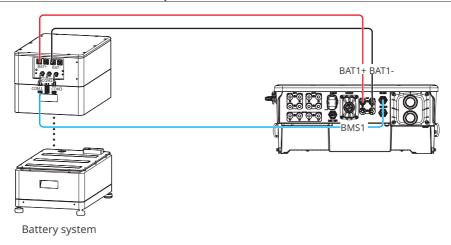

NOTICE


The two input strings per MPPT should be of the same type, the same number of modules, the same tilt and angle to ensure the best efficiency.



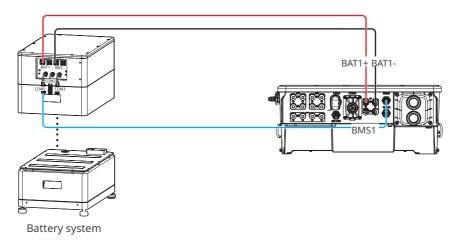
6.5 Connecting the Battery Cable

A DANGER

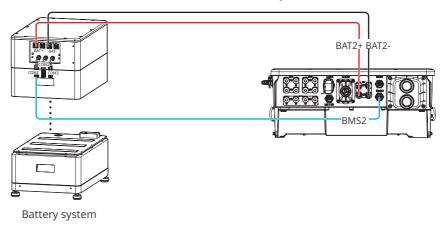

- The battery used with the inverter shall be approved by the inverter manufacturer. The approved battery list can be obtained through the official website.
- A short circuit in the battery may cause personal injury. The instantaneous high current caused by a short circuit can release a large amount of energy and may cause a fire.
- Before connecting the battery cable, ensure the inverter and the battery, and downstream&upstream switches, are all disconnected.
- It is forbidden to connect and disconnect the battery cables when the inverter is running. Otherwise it may cause electric shock.
- Do not connect one battery pack to more than one inverter at the same time. Otherwise, it
 may cause damage to the inverter.
- It is forbidden to connect loads between the inverter and batteries.
- When connecting battery cables, use insulated tools to prevent accidental electric shock or short circuit to the batteries.
- Ensure that the open circuit voltage of the battery is within the permissible range of the inverter.
- Install a DC breaker between the inverter and the battery.

WARNING

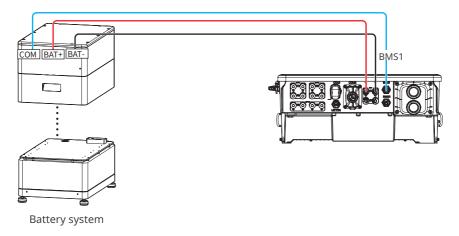
- Connect the battery cables to the corresponding terminals such BAT+, BAT- and grounding ports correctly. Otherwise it will cause damage to the inverter.
- Ensure that the whole cable cores are inserted into the terminal holes. No part of the cable core can be exposed.
- Ensure that the cables are connected securely. Otherwise it will cause damage to the inverter due to overheat during its operation.

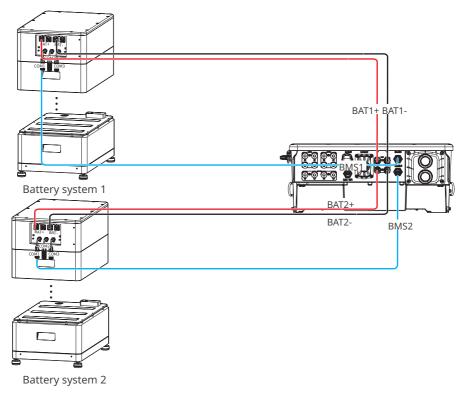

- Delayed charge cannot be set to 100% if the PV is oversizing.
- Connecting the BMS communication cable for battery communication when conneting the inverter to the battery. For more detailed instructions, refer to 6.7.3 Connecting the BMS or Meter Communication Cable.
- The batteries and inverters should be connected in different ways when the inverter models differ or the number of batteries differ, as explained below:

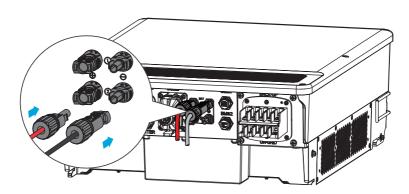
GW15K-ET or GW20K-ET can be connected to only one battery system. The battery cable must be connected to the BAT1+/- ports, as shown below.

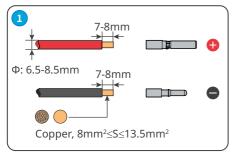


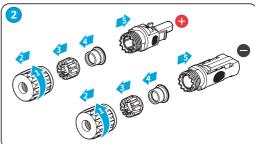
GW25K-ET, GW29.9K-ET, and GW30K-ET can be connected to one or two battery systems, as shown below.

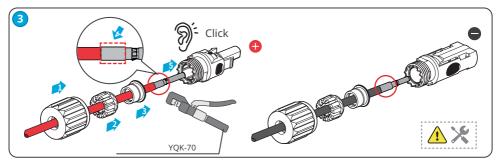

When connecting a single battery system to BAT1+/- ports of the inverter, the BMS communication cable should be connected to the BMS1 port as below

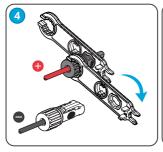

When connecting a single battery system to BAT2+/- ports of the inverter, the BMS communication cable should be connected to the BMS2 port as below.

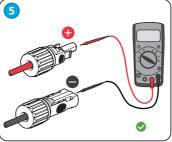



When the nominal charge and discharge current of the single battery system is higher than 50A, the single battery system can be connected to BAT1+/- and BAT2+/- ports of the inverter. The BMS communication cable should be connected to the BMS1 port as below.




When connecting two single battery systems to BAT2+/- ports of the inverter, the BMS communication cable should be connected to the BMS1 or BMS2 port respectively as below.



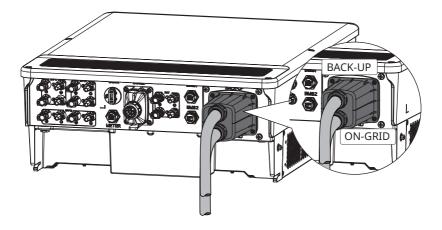


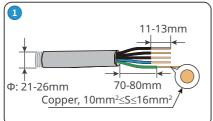
6.6 Connecting the AC Cable

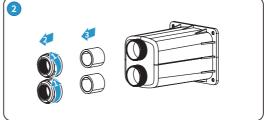
MARNING

Do not connect loads between the inverter and the AC switch directly connected to the inverter.

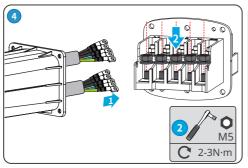
The residual current monitoring unit (RCMU) is integrated into the inverter to avoid the residual current exceeds the limit.

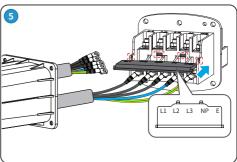

The type A RCD can be connected to the inverter for protection according to the local laws and regulations. Recommended specifications: ON-GRID RCD: 300mA; BACK-UP RCD: 30mA.

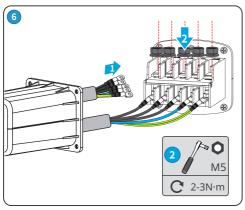

NOTICE

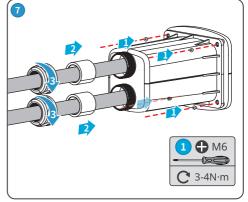

- Install one AC output circuit breaker for each inverter. Multiple inverters cannot share one
 AC circuit breaker.
- An AC circuit breaker shall be installed on the AC side to make sure that the inverter can safely disconnect the grid when an exception happens. Select the appropriate AC circuit breaker in compliance with local laws and regulations.

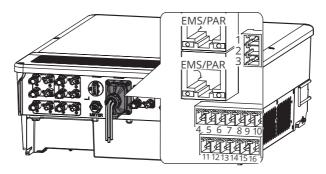
! WARNING

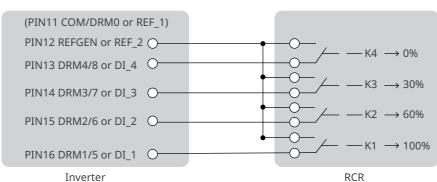

- Connect the AC cables to the corresponding terminals such as "L1", "L2", "L3", "N", and PE correctly. Otherwise it will cause damage to the inverter.
- Ensure that the whole cable cores are inserted into the terminal holes. No part of the cable core can be exposed.
- Ensure that the insulation board is inserted into the AC terminal tightly.
- Ensure that the cables are connected securely. Otherwise it will cause damage to the inverter due to overheat during its operation.





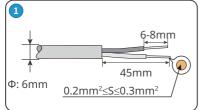


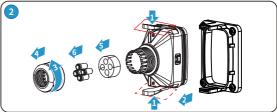


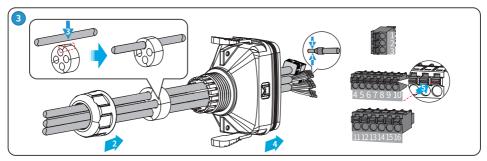


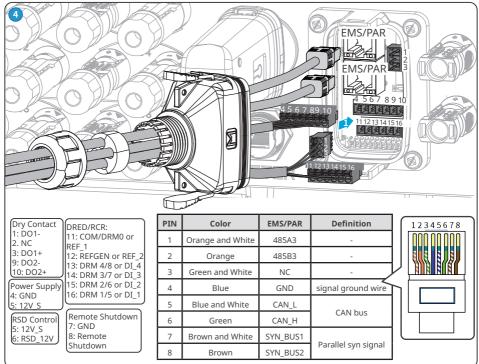
6.7 Communication Connection

- Make sure that the communication device is connected to the right COM port. Route the communication cable far away from any interference source or power cable to prevent the signal from being influenced.
- The remote shutdown function and DRED/RCR function is off by default. Please go to the SolarGo app to enable the function if you need to use it. Please refer to the SolarGo User Manual for detailed operations.

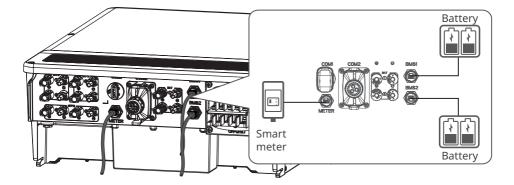



No.	Port Definition	Function	Description
1	DO1+	Dry contact	Optionnal function. The inverter reserves a
2	NC	Reserved PIN	dry contact controlling port, which supports connecting additional
3	DO1-	Dry contact	contactors to enable/disable the load. For high voltage AC230V. PIN2 is reserved for safety regulations.
4	GND	Power supply	Optionnal function. Supplies power for external devices.
5	12V_S		


6	RSD_12V	Controls the RSD modules externally.	Reserved. Connects to RSD_12V and 12V_S to control the RSD module rapidly.	
7	GND		Ontion and foundation Control the consideration	
8	Remote shutdown	Remote shutdown	Optionnal function. Controls the equipment on/off remotely.	
9	DO2+		Optionnal function. The inverter reserves a	
10	DO2-	Dry contact	dry contact controlling port, which supports connecting additional contactors to enable/ disable the load.	
11	COM/DRM0 or REF_1		Optionnal function. • DRED (Demand Response Enabling Device): the inverter satisfies the Australian DERD certification and offers DRED signal	
12	REFGEN or REF_2			
13	DRM4/8 or DI_4		controlling ports.	
14	DRM3/7 or DI_3	DRED or RCR	 RCR (Ripple Control Receiver): In Germany and some other European regions, grid 	
15	DRM2/6 or DI_2	DRED OF RCK		companies use Ripple Control Receiver to
16	DRM1/5 or DI_1		convert grid dispatching signals into dry contact mode for transferring. And the power station receives grid dispatching signals through dry contact communication mode.	
17	EMS/PAR	EMS communication or parallel connection port	 Optional function. EMS communication port: connects with the third party device. The third party device is not supported in a parallel system. Reserved function. PAR communication port: serves as the communication port for the inverter parallelizing. 	

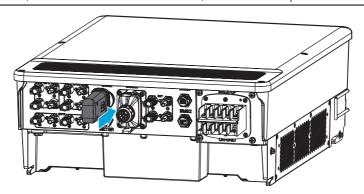

6.7.1 Connecting the Communication Cable

- To ensure the waterproof protection, do not remove the waterproof seal of the unused ports.
- RJ45 connector with the following definition can be connected:


6.7.2 Connecting the BMS or Meter Communication Cable

! WARNING

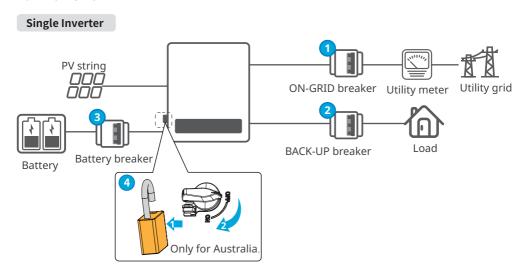
- For GW15K-ET and GW20K-ET, please connect the cable to BMS1 port to realize BMS communication. Otherwise, BMS communication may fail.
- For GW25K-ET, GW29.9K-ET, and GW30K-ET, please connect the cable to BMS1 port to realize BMS communication when single battery system is connected. Otherwise, BMS communication may fail. For more details, refer to 6.5 Connecting the Battery Cable.


- The smart meter and CT have been preset parameters before delivered with the inverter.
 Do not modify the relevant parameters.
- The BMS communication cable and meter communication cable are delivered with the inverter, with default length of 3m and 10m respectively.
- Each inverter needs to be connected to one smart meter independently. Do not connect one smart meter to multiple inverters. Contact the manufacturer or supplier to purchase additional smart meter(s) if you need.
- Ensure that CT connects with the corresponding phase line: CT1 is connected to L1; CT2 is connected to L2; and CT3 is connected to L3. And ensure that the CT is connected in the right direction. Please refer to the smart meter user manual for detailed operations.
- Use the included BMS communication cable to realize communication between the inverter and the battery. Otherwise, the communication may fail. If more communication cables are needed, please prepare network cables and RJ connectors by yourself to make the cable. Only crimp PIN4 and PIN5 of the connector when making the cable, otherwise the communication may fail.

PIN	Color	Smart Meter	BMS1	BMS2	
1	Orange and White	NC	NC	NC	12345
2	Orange	NC	NC	NC	
3	Green and White	NC	NC	NC	
4	Blue	NC	CANH1	CANH2	
5	Blue and White	NC	CANL1	CANL2	\square
6	Green	NC	NC	NC	
7	Brown and White	485_B1	NC	NC	
8	Brown	485_A1	NC	NC	

6.7.4 Installing the Communication Module (Optional)

- Plug a communication module into the inverter to establish a connection between
 the inverter and the smartphone or web pages. The communication module can be a
 Bluetooth module, WiFi module, LAN module, or 4G module. Set inverter parameters,
 check running information and fault information, and observe system status in time via the
 smartphone or web pages.
- Refer to the delivered communication module user manual to get more introduction to the module. For more detailed information, visit www.goodwe.com.
- Bluetooth kit, WiFi kit module: Standard. LAN kit, 4G kit module: optional.



7 Equipment Commissioning

7.1 Check Before Power ON

No.	Check Item	
1	The product is firmly installed at a clean place that is well-ventilated and easy-to operate.	
2	The PE, DC input, AC output, and communication cables are connected correctly and securely.	
3	Cable ties are intact, routed properly and evenly.	
4	Unused cable holes are fitted using the waterproof nuts.	
5	The electrical conduit holes are sealed.	
6	The voltage and frequency at the connection point meet the inverter grid connection requirements.	

7.2 Power On

Turn on: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

8 System Commissioning

8.1 Indicators and Buttons

Indicator	Status	Description
		The inverter is power on and in the standby mode.
	шшшш	The inverter is starting up and in the self-check mode.
		The inverter is in normal operation under grid-tied or off-grid modes.
		BACK-UP output overload.
		A fault has occurred.
		The inverter is powered off.
The gri		The grid is abnormal but the BACK-UP port of the inverter is powered.
		The grid is normal and the BACK-UP port of the inverter is powered.
		BACK-UP is off.
		The monitoring module of the inverter is resetting.
((a))		The inverter fails to connect with the communication Termination.
«I»	шшшш	Communication fault between the communication Termination and Server.
		The monitoring of the inverter operates well.
		The monitoring module of the inverter has not been started yet.

Battery SOC indicator

Indicator	Description	
	75% < SOC≤100%	
	50% <soc≤75%< th=""></soc≤75%<>	
	25% <soc≤50%< th=""></soc≤50%<>	
	0% <soc<25%< th=""></soc<25%<>	
	No battery connected.	

Indictor light blinking during battery discharing: for example, when the battery SOC is betweent 25% and 50%, the light at the 50% position blinks.

8.2 Setting Inverter Parameters via SolarGo App

NOTICE

Please set the inverter parameters first via SolarGo app to ensure its normal operation.

SolarGo App is one smart phone application used to communicate with the inverter via bluetooth, WiFi, 4G or GPRS modules. Commonly used functions:

- 1. Check the operating data, software version, alarms, etc.
- 2. Set grid parameters, communication parameters, safety countries, power limitation, etc.
- 3. Equipment maintenance.
- 4. Upgrade software version.

For more details, refer to SolarGo User Manual. Scan the QR code or visit https://en.goodwe. com/Ftp/EN/Downloads/User%20Manual/GW SolarGo User%20Manual-EN.pdf to get the user manual.

SolarGo App

SolarGo User Manual

8.3 Monitoring via SEMS Portal

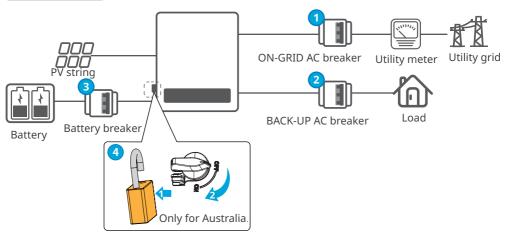
SEMS Portal is a monitoring platform used to communicate with the inverter via WiFi, LAN, 4G, or GPRS. Commonly used functions:

- 1. Manage the organization or User information;
- 2. Add and monitor the power plant information;
- 3. Equipment maintenance.

For more details, refer to SEMS Portal User Manual. Scan the QR code or visit https://en.goodwe. com/Ftp/EN/Downloads/User%20Manual/GW SEMS%20Portal%20APP User%20Manual-EN.pdf to get the user manual.

SEMS Portal App

SEMS Portal app User Manual


9 Maintenance

9.1 Power OFF the Inverter

DANGER

- Power off the inverter before operations and maintenance. Otherwise, the inverter may be damaged or electric shocks may occur.
- Delayed discharge. Wait until the components are discharged after power off.

Single Inverter

Turn off: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

9.2 Removing the Inverter

! WARNING

- Make sure that the inverter is powered off.
- Wear proper PPE before any operations.
- **Step 1:** Disconnect all the cables, including DC cables, AC cables, communication cables, the communication module, and PE cables.
- **Step 2:** Remove the inverter from the mounting plate.
- **Step 3:** Remove the mounting plate.
- **Step 4:** Store the inverter properly. If the inverter needs to be used later, ensure that the storage conditions meet the requirements.

9.3 Disposing of the Inverter

If the inverter cannot work anymore, dispose of it according to the local disposal requirements for electrical equipment waste. The inverter cannot be disposed of together with household waste.

9.4 Troubleshooting

Perform troubleshooting according to the following methods. Contact the after-sales service if these methods do not work.

Collect the information below before contacting the after-sales service, so that the problems can be solved quickly.

- 1. Inverter information like serial number, software version, installation date, fault time, fault frequency, etc.
- 2. Installation environment, including weather conditions, whether the PV modules are sheltered or shadowed, etc. It is recommended to provide some photos and videos to assist in analyzing the problem.
- 3. Utility grid situation.

No.	Fault	Cause	Solutions
1	Utility Loss	Utility grid power fails. The AC cable is disconnected, or the AC breaker is off.	The alarm is automatically cleared after the grid power supply is restored. Check whether the AC cable is connected and the AC breaker is on.
2	Grid Overvoltage	The grid voltage exceeds the permissible range, or the duration of high voltage exceeds the requirement of HVRT.	 If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. If the problem occurs frequently, check whether the grid voltage is within the permissible range. Contact the local power company if the grid voltage exceeds the permissible range. Modify the overvoltage protection threshold, HVRT or disable the overvoltage protection function after obtaining the consent of the local power company if the grid frequency is within the permissible range. Check whether the AC breaker and the output cables are connected securely and correctly if the problem persists.

No.	Fault	Cause	Solutions
3	Grid Rapid Overvoltage	The grid voltage is abnormal or ultra- high.	 If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. If the problem occurs frequently, check whether the grid voltage is within the allowed range. Contact the local power company if the grid voltage exceeds the permissible range. Modify the grid overvoltage rapid protection threshold after obtaining the consent of the local power company if the grid voltage is within the permissible range.
4	Grid Undervoltage	The grid voltage is lower than the permissible range, or the duration of low voltage exceeds the requirement of LVRT.	 If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. If the problem occurs frequently, check whether the grid voltage is within the permissible range. Contact the local power company if the grid voltage exceeds the permissible range. Modify the undervoltage protection threshold, LVRT or disable the undervoltage protection function after obtaining the consent of the local power company if the grid frequency is within the permissible range. Check whether the AC breaker and the output cables are connected securely and correctly if the problem persists.

No.	Fault	Cause	Solutions
5	Grid 10min Overvoltage	The moving average of grid voltage in 10min exceeds the range of safety requirements.	 If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. If the problem occurs frequently, check whether the grid voltage is within the allowed range. Contact the local power company if the grid voltage exceeds the permissible range. Modify the grid overvoltage rapid protection threshold after obtaining the consent of the local power company if the grid voltage is within the permissible range.
6	Grid Overfrequency	Utility grid exception. The actual grid frequency exceeds the requirement of the local grid standard.	 If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. If the problem occurs frequently, check whether the grid frequency is within the permissible range. Contact the local power company if the grid frequency exceeds the permissible range. Modify the overfrequency protection threshold or disable the overfrequency protection function after obtaining the consent of the local power company if the grid frequency is within the permissible range.

No.	Fault	Cause	Solutions
7	Grid Underfrequency	Utility grid exception. The actual grid frequency is lower than the requirement of the local grid standard.	 If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. If the problem occurs frequently, check whether the grid frequency is within the permissible range. Contact the local power company if the grid frequency exceeds the permissible range. Modify the underfrequency protection threshold or disable the underfrequency protection function after obtaining the consent of the local power company if the grid frequency is within the permissible range. Or close "Grid Underfrequency" function.
8	Grid Frequency Instability	Utility grid exception. The actual grid frequency change rate does not meet the requirement of the local grid standard.	 If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. If the problem occurs frequently, check whether the grid frequency is within the permissible range. Contact the local power company if the grid frequency exceeds the permissible range. Contact the dealer or the after-sales service if the grid frequency is within the permissible range.
9	Anti-islanding	The utility grid is disconnected. The utility grid is disconnected according to the safety regulations, but the grid voltage is maintained due to the loads.	 Check whether the utility grid is disconnected. Contact the dealer or the after-sales service.

No.	Fault	Cause	Solutions
10	LVRT Undervoltage	Utility grid exception. The duration of the utility grid exception exceeds the set time of LVRT.	1. If the problem occurs occasionally, the utility grid may be abnormal temporarily. The inverter will recover automatically after detecting that the utility grid is normal. 2. If the problem occurs frequently, check
11	HVRT Overvoltage	Utility grid exception. The duration of utility grid exception exceeds the set time of HVRT.	whether the grid frequency is within the permissible range. If not, contact the local power company. If yes, contact the dealer or the after-sales service.
12	Abnormal GFCI 30mA		If the problem occurs occasionally, it may be caused by a cable exception. The
13	Abnormal GFCI 60mA	The input insulation impedance	inverter will recover automatically after the problem is solved.
14	Abnormal GFCI 150mA	becomes low when the inverter is working.	2. Check whether the impedance between the PV string and PE is too low if the problem
15	Abnormal GFCI		occurs frequently or persists.
16	Large DC of AC current L1	The DC component	If the problem is caused by an external fault like a utility grid exception or frequency exception, the inverter will
17	Large DC of AC current L2	of the output current exceeds the safety range or default range.	recover automatically after solving the problem. 2. If the problem occurs frequently and the PV station cannot work properly, contact the dealer or the after-sales service.
18	Low Insulation Res.	 The PV string is short-circuited to PE. The PV system is in a moist environment and the cable is not well insulated to the ground. 	 Check whether the resistance of the PV string to PE exceeds 50kΩ. If no, check the short circuit point. Check whether the PE cable is connected correctly. If the resistance is lower on rainy days, please reset the ISO.

No.	Fault	Cause	Solutions
19	Abnormal Ground	 The PE cable of the inverter is not connected well. The L cable and N cable are connected reversely when output of the PV string is grounded. 	 Check whether the PE cable of the inverter is connected properly. Check whether the L cable and N cable are connected reversely if output of the PV string is grounded.
20	Anti Reverse power Failure	Abnormal fluctuation of load	 If the exception is caused by an external fault, the inverter will recover automatically after solving the problem. If the problem occurs frequently and the PV station cannot work properly, contact the dealer or the after-sales service.
21	Internal Comm Loss	 Frame format error Parity checking error Can bus offline Hardware CRC error Send (receive) control bit is receive (send). Transmit to the unit that is not allowed. 	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.
22	AC HCT Check abnormal	The sampling of the AC HCT is abnormal.	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.
23	GFCI HCT Check abnormal	The sampling of the GFCI HCT is abnormal.	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.

No.	Fault	Cause	Solutions
24	Relay Check abnormal	 The relay is abnormal or short-circuited. The control circuit is abnormal. The AC cable connection is abnormal, like a virtual connection or short circuit. 	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.
26	Flash Fault	The internal Flash storage is abnormal.	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.
27	DC Arc Fault	 The DC terminal is not firmly connected. The DC cable is broken. 	Read the Quick Installation Guide and check whether the cables are connected properly.
28	AFCI Self-test Fault	AFCI detection is abnormal.	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.
29	Cavity Overtemperature	 The inverter is installed in a place with poor ventilation. The ambient temperature exceeds 60°C. A fault occurs in the internal fan of the inverter. 	 Check the ventilation and the ambient temperature at the installation point. If the ventilation is poor or the ambient temperature is too high, improve the ventilation and heat dissipation. Contact the dealer or after-sales service if both the ventilation and the ambient temperature are normal.

No.	Fault	Cause	Solutions		
30	BUS Overvoltage	 The PV voltage is too high. The sampling of the inverter BUS voltage is abnormal. 	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.		
31	PV Input Overvoltage	The PV array configuration is not correct. Too many PV panels are connected in series in the PV string.	Check the serial connection of the PV array. Make sure that the open circuit voltage of the PV string is not higher than the maximum operating voltage of the inverter.		
32	PV Continuous Hardware Overcurrent	 The PV configuration is not proper. The hardware is damaged. 	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.		
33	PV Continuous Software Overcurrent	The PV configuration is not proper. The hardware is damaged.	Disconnect the AC output switch and DC input switch, then connect them 5 minutes later. Contact the dealer or the after-sales service if the problem persists.		
34	String1 PV String Reversed	The PV string	Check whether the PV1 and PV2 strings are		
35	String2 PV String Reversed	reversely.	connected reversely.		

9.5 Routine Maintenance

! WARNING

- Make sure that the inverter is powered off.Wear proper PPE before any operations.

Maintaining Item	Maintaining Method	Maintaining Period	
System Clean	Check the heat sink, air intake, and air outlet for foreign matter or dust.	Once 6-12 months	
DC Switch	Turn the DC switch on and off ten consecutive times to make sure that it is working properly.	Once a year	
Electrical Connection	Check whether the cables are securely connected. Check whether the cables are broken or whether there is any exposed copper core.	Once 6-12 months	
Sealing	Check whether all the terminals and ports are properly sealed. Reseal the cable hole if it is not sealed or too big.	Once a year	
THDi Test	For Australia requirements, in the THDi test, there should add Zref between inverter and mains. L: $0.24~\Omega+j0.15~\Omega$; N: $0.16~\Omega+j0.10~\Omega$ L: $0.15~\Omega+j0.15~\Omega$; N: $0.1~\Omega+j0.1~\Omega$	As needed.	

10 Technical Parameters

Technical Data	GW15K-ET	GW20K-ET	GW25K-ET	GW29.9K- ET	GW30K-ET		
Battery Input Data							
Battery Type	Li-Ion	Li-Ion	Li-Ion	Li-Ion	Li-Ion		
Nominal Battery Voltage (V)	500	500	500	500	500		
Battery voltage range (V)	200~800	200~800	200~800	200~800	200~800		
Start-up Voltage (V)	180	180	180	180	180		
Number of Battery Input	1	1	2	2	2		
Max. Continuous Charging Current (A)	50	50	50×2	50×2	50×2		
Max. Continuous Discharging Current (A)	50	50	50×2	50×2	50×2		
Max Charge Power (W)	15,000	20,000	25,000	30,000	30,000		
Max Discharge Power (W)	15,000	20,000	25,000	30,000	30,000		
PV String Input Data							
Max. Input Power (W)*1	22,500	30,000	37,500	45,000	45,000		
Max. Input Voltage (V)*2	1000	1000	1000	1000	1000		
MPPT Operating Voltage Range (V)	200~850	200~850	200~850	200~850	200~850		
MPPT Voltage Range at Nominal Power (V)*3	400~850	400~850	450~850	450~850	450~850		
Start-up Voltage (V)	200	200	200	200	200		
Nominal Input Voltage (V)	620	620	620	620	620		
Max. Input Current per MPPT (A)	30	30	30	30	30		
Max. Short Circuit Current per MPPT (A)	38	38	38	38	38		
Number of MPPT	2	2	3	3	3		
Number of Strings per MPPT	2/2	2/2	2/2/2	2/2/2	2/2/2		
AC Output Data (On-grid)							
Nominal Output Power (W)	15,000	20,000	25,000	29,900	30,000		
Max. Output Power (W)	15,000	20,000	25,000	29,900	30,000		
Nominal Output Power at 40 °C(W) *14	15,000	20,000	25,000	29,900	30,000		

Technical Data	GW15K-ET	GW20K-ET	GW25K-ET	GW29.9K- ET	GW30K-ET
Max. Output Power at 40 °C (W)*14	15,000	20,000	25,000	29,900	30,000
Nominal Apparent Power Output to Utility Grid (VA)	15,000	20,000	25,000	29,900	30,000
Max. Apparent Power Output to Utility Grid (VA)*3	16,500	22,000	27,500	29,900	33,000
Nominal Apparent Power from Utility Grid(VA)	15,000	20,000	25,000	30,000	30,000
Max. Apparent Power from Utility Grid (VA) *12	15,000	20,000	25,000	30,000	30,000
Nominal Output Voltage (V)	380/400, 3L/N/PE	380/400, 3L/N/PE	380/400, 3L/N/PE	380/400, 3L/N/PE	380/400, 3L/N/PE
Output Voltage Range (V)*4	0~300	0~300	0~300	0~300	0~300
Nominal AC Grid Frequency (Hz)	50/60	50/60	50/60	50/60	50/60
AC Grid Frequency Range (Hz)	45~65	45~65	45~65	45~65	45~65
Max. AC Current Output to Utility Grid (A)*11	23.9	31.9	39.9	43.3	47.8
Max. AC Current From Utility Grid (A) *13	21.7	29.0	36.2	43.3	43.5
Nominal AC Current From Utility Grid (A)	21.7	29.0	36.2	43.3	43.5
Max. Output Fault Current (Peak and Duration) (A)	241.5A @126ms	241.5A @126ms	241.5A @126ms	241.5A @126ms	241.5A @126ms
Inrush Current (Peak and Duration) (A)	264A @53us	264A @53us	264A @53us	264A @53us	264A @53us
Nominal Output Current (A)*5	21.7	29.0	36.2	43.3	43.5
Power Factor	~1	(Adjustable f	rom 0.8 leadi	ng~0.8 laggii	ng)
Max. Total Harmonic Distortion	<3%	<3%	<3%	<3%	<3%
Maximum Output Overcurrent Protection (A)	94	94	94	94	94
AC Output Data (Back-up)		-			
Back-up Nominal Apparent Power (VA)	15,000	20,000	25,000	29,900	30,000

Technical Data	GW15K-ET	GW20K-ET	GW25K-ET	GW29.9K- ET	GW30K-ET
Max. Output Apparent Power Without Grid (VA)* ⁶	15,000 (18,000 @60s , 24,000 @3s)	20,000 (24,000 @60s , 32,000 @3s)	25,000 (30,000 @60s)	30,000 (36,000 @60s)	30,000 (36,000 @60s)
Max. Output Apparent Power with Grid (VA)	15,000	20,000	25,000	29,900	30,000
Nominal Output Current (A)	22.7	30.3	37.9	45.5	45.5
Max. Output Current (A)	22.7 (27.3 @60s, 36.4 @3s)	30.3 (36.4 @60s, 48.5 @3s)	37.9 (45.5 @60s)	45.5 (54.5 @60s)	45.5 (54.5 @60s)
Max. Output Fault Current (Peak and Duration) (A)	94	94	94	94	94
Inrush Current (Peak and Duration) (A)	264 @53us	264 @53us	264 @53us	264 @53us	264 @53us
Maximum Output Overcurrent Protection (A)	94	94	94	94	94
Nominal Output Voltage (V)	380/400	380/400	380/400	380/400	380/400
Nominal Output Frequency (Hz)	50/60	50/60	50/60	50/60	50/60
Output THDv (@Linear Load)	<3%	<3%	<3%	<3%	<3%
Efficiency					
Max. Efficiency	98.0%	98.0%	98.0%	98.0%	98.0%
European Efficiency	97.5%	97.5%	97.5%	97.5%	97.5%
Max. Battery to AC Efficiency	97.5%	97.5%	97.5%	97.5%	97.5%
MPPT Efficiency	99.9%	99.9%	99.9%	99.9%	99.9%
Protection					
PV String Current Monitoring	Integrated	Integrated	Integrated	Integrated	Integrated
PV Insulation Resistance Detection	Integrated	Integrated	Integrated	Integrated	Integrated
Residual Current Monitoring	Integrated	Integrated	Integrated	Integrated	Integrated
PV Reverse Polarity Protection	Integrated	Integrated	Integrated	Integrated	Integrated
Battery Reverse Polarity Protection	Integrated	Integrated	Integrated	Integrated	Integrated
Anti-islanding Protection	Integrated	Integrated	Integrated	Integrated	Integrated

Technical Data	GW15K-ET	GW20K-ET	GW25K-ET	GW29.9K- ET	GW30K-ET
AC Overcurrent Protection	Integrated	Integrated	Integrated	Integrated	Integrated
AC Short Circuit Protection	Integrated	Integrated	Integrated	Integrated	Integrated
AC Overvoltage Protection	Integrated	Integrated	Integrated	Integrated	Integrated
DC Switch*7	Integrated	Integrated	Integrated	Integrated	Integrated
DC Surge Protection	Type II				
AC Surge Protection	Type III				
AFCI	Optional	Optional	Optional	Optional	Optional
Rapid Shutdown	Optional	Optional	Optional	Optional	Optional
Remote Shutdown	Integrated	Integrated	Integrated	Integrated	Integrated
General Data					
Operating Temperature Range (°C)	-35~+60	-35~+60	-35~+60	-35~+60	-35~+60
Relative Humidity	0-95%	0-95%	0-95%	0-95%	0-95%
Max. Operating Altitude (m)	4000	4000	4000	4000	4000
Cooling Method	Smart Fan Cooling				
Display	LED, WLAN + APP				
Communication with BMS	RS485 / CAN				
Communication with Meter	RS485	RS485	RS485	RS485	RS485
Communication with Portal	WiFi / 4G				
Weight (kg)	48	48	54	54	54
Dimension W×H×D (mm)			520×660×220)	
Noise Emission (dB)	<45	<45	<45	<60	<60
Topology	Non- isolated	Non- isolated	Non- isolated	Non- isolated	Non- isolated
Self-consumption at Night (W) *8	<15	<15	<15	<15	<15
Ingress Protection Rating	IP66	IP66	IP66	IP66	IP66
DC Connector	MC4	MC4	MC4	MC4	MC4
AC Connector	ОТ	ОТ	ОТ	ОТ	ОТ
Environmental Category	4K4H	4K4H	4K4H	4K4H	4K4H

Technical Data	GW15K-ET	GW20K-ET	GW25K-ET	GW29.9K- ET	GW30K-ET		
Pollution Degree	III	III	III	III	III		
Overvoltage Category	DC II / AC III	DC II / AC III	DC II / AC III	DC II / AC III	DC II / AC III		
Protective Class	I	I	I	I	I		
Storage Temperature (°C)	-45~+85	-45~+85	-45~+85	-45~+85	-45~+85		
The Decisive Voltage Class (DVC)	Battery: C PV: C AC: C Com: A	Battery: C PV: C AC: C Com: A	Battery: C PV: C AC: C Com: A	Battery: C PV: C AC: C Com: A	Battery: C PV: C AC: C Com: A		
Mounting Method	Wall Mounted	Wall Mounted	Wall Mounted	Wall Mounted	Wall Mounted		
Active Anti-islanding Method	AFDPF + AQDPF *9	AFDPF + AQDPF *9	AFDPF + AQDPF *9	AFDPF + AQDPF *9	AFDPF + AQDPF *9		
Type of Electrical Supply System	Three phase Grid	Three phase Grid	Three phase Grid	Three phase Grid	Three phase Grid		
Country of Manufacture	China	China	China	China	China		
Certification*10							
irid Standards VDE-AR-N 4105, EN50549-1							
Safety Regulation	IEC62109-1&2						
EMC	EN61000-6-1, EN61000-6-2, EN61000-6-3, EN61000-6-4						

^{*1:} In Australia, for most of the PV module, the max.Input power can achieve 2*Pn, Such as the max.input power of GW15K-ET can achieve 30000W. Besides, Max. Input Power, not continuous for 1.5*normal power.

- *2: For 1000V system, Maximum operating voltage is 950V.
- *3: According to the local grid regulation.
- *4: Output Voltage Range: phase voltage.
- *5: For 380V grid, the Nominal Output Current is 22.7A for GW15K-ET, 30.3A for GW20K-ET, 37.9A for GW25K-ET, 45.3A GW29.9K-ET, and 45.5A for GW30K-ET.
- *6: Can be reached only if PV and battery power is enough.
- *7: DC Switch: GHX6-55P (for Australia).
- *8: No Back-up Output.
- *9: AFDPF: Active Frequency Drift with Positive Feedback, AQDPF: Active Q Drift with Positive Feedback.
- *10: Not all certifications & standards listed, check the official website for details.
- *11: For 380V grid, the Max. AC Current Output to Utility Grid is 25A for GW15K-ET, 33.3A for GW20K-ET, 41.7A for GW25K-ET, 49.8A for GW29.9K-ET, 50A for GW30K-ET.
- *12: When the load is connected to the inverter's backup port, the Max. Apparent Power from Utility Grid can reach to 22.5K for GW15K-ET, 30K for GW20k-ET, 33K for GW25K-ET, 33K for GW29.9K-ET, and 33K for GW30K-ET respectively.
- *13: When the load is connected to the inverter's backup port, the Max. AC Current From Utility Grid can reach to 34A for GW15K-ET, 45A for GW20k-ET, 50A for GW25K-ET, 50A for GW29.9K-ET, and 50A for GW30K-ET respectively.
- *14: Nominal Output Power at 40 ℃(W) and Max. Output Power at 40 ℃ (W) are only for Brazil.

Official Website

GoodWe Technologies Co., Ltd.

www.goodwe.com

⊠ service@goodwe.com

Local Contacts